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Interaction between Hopf and convective instabilities in a flow reactor
with cubic autocatalator kinetics
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The interaction between Hopf and convective instabilities in a flow system based on cubic autocatalator
kinetics is discussed. The interaction is described in terms of solutions to a complex Ginzburg-Landau equa-
tion. These solutions are wave packets consisting of regions of constant amphindiaifferent phage
separated by a region of irregular behavior.
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The differential-flow-induced chemical instabilityDI- equation to be readily obtained, a clear identification be-
FICI) [1-3] has aroused considerable interest recently as tween the behavior of the solutions to the CGalid close
mechanism for producing spatial structure in chemical systo the mode interactigrand their counterparts in the original
tems due to its inherent differences with the much moremodel is then possible. Thus our treatment complements that
widely considered Turing instability. In part, this interest in presented recently if8], where a CGLE for a DIFICI-Hopf
the DIFICI is sustained by its experimental verification in ainteraction was derived heuristically for a general system and
differential-flow reactor, a device in which some of the re-where direct comparison with a specific model is not readily
agents required for the reaction are immobilized within theavailable. Further, the relative simplicity of the CGLE for
reactor while the rest are allowed to flgand diffuse freely.  our model permits a detailed examination, revealing complex
This highlights an important difference between the DIFICIspatiotemporal structures that were not seen in the more gen-
and Turing mechanisms in that in the former case the spatiaral treatmenf9].
structures that arise propagate through the system whereas in Our model is based on the reaction between subskate
the latter case the basic bifurcation is to steady, though spand autocatalysB with the kinetic scheme:
tially varying, behavior.

A model for this reactor, based on cubic autocatalé&bor P—A, rate=«ko[Plp,
Gray-Scotft kinetics, has been considered [i], where it
was shown that the DIFICI arises essentially through a con- A+2B—3A, rate=«[A][B]? (1)
vective (or spatial instability [5,6]. The model taken if4]
assumed that the substrate had been immobilized with the B—inert, rate=«,[B],

autocatalyst being made to flow. The spatially uniform
steady state then became unstable at a crititmizerg flow  where thex; (i=0,1,2) are constants. We assume thds
rate. At higher flow rates a wave packet developed that cormade immobile within the reactor and tHaican flow with a
sisted of waves of constant amplitude and frequency and thabonstant velocity. With the further assumption of planar ge-
propagated through the system with a constant velocityymetry we arrive at the dimensionless equatipfis
growing in lateral extent as it did so, leaving the system in its
original spatially uniform steady state at its rear. This model Jda )
emphasizes a further difference between the DIFICI and Tur- ot =p—ab’, )
ing instabilities as the latter requiré®r cubic autocatalator
kineticg that the autocatalyst be relatively immobile com- 5
pared to the substrat’,8], the opposite situation to the @zﬁ_(ﬁ@jﬂbz_b 3
model in[4]. gt ox2 T OX

A feature of our flow-reactor modg¢#] is its ability to
sustain spatially uniform temporal oscillations arising from aon —oo<<x<(e0, t>0. Initially the system is in its spatially
supercritical Hopf bifurcation as well as propagating spatialuniform steady state
structures arising from convective instabilities. There is then
the possibility of the interaction between these two mecha- ax,0=u"" b(x0=pn (4)
nisms for destabilizing the spatially uniform steady state and
this is what we consider. The linear stability analysis pre-with a small local perturbation being made to E4) at t
sented if4] shows that the critical flow rate approaches zero=0. In the abovep is the dimensionless flow rat@ur bi-
as the Hopf bifurcation is approached. We exploit this,furcation parametg¢rand u is the dimensionless rate of pro-
through a weakly nonlinear analysis valid close to the Hopfduction of A from the precursoP. Equations(2),(3) are
bifurcation and for small flow rates, to derive a complexderived in full in[4]. We note[10] that Eq.(4) is temporally
Ginzburg-Landau equatiofCGLE) to describe this two- stable foru>1 and undergoes a supercritical Hopf bifurca-
mode interaction. The simplicity of our model enables thistion at w=1 giving stable limit cycles inu<1.
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FIG. 1. Plots of the amplitudgd| at equal time intervals obtained from a numerical integration of(E@). for = 3.0. The system was
perturbed initially in a small region centered s# 0.

In [4] it was shown that, forp> ¢, there is a range of d=ey, Y=0(1) as e—0. (8)
wave numbersk for which steady staté4) is unstable to o _ _
small local perturbations, wherg, is the minimum on the An expansion in powers o€ about the spatially uniform

neutral curve initial state(4), with an O(€) term of the form
(K24 u2—1)2(k2+1) (a1,by)=A(s,7)e"(-2, 1+i)+c.c., 9)
P°= 5 5 . m>1, 0<k<l. (5 . .
ke(1-k?) where s and 7 are the long space and time variablas,
=ex, 7=¢€t, leads, through the use of the method of mul-
Furthermore tiple scaleg11] to keep the expansion uniform by removing
2 N the secular terms that arise atéd), to the CGLE for the
$e~2V2(u—1Y+--- as u—l” ®)  complex amplitudeA(s, 7) as
To derive the CGLE describing the DIFICI-Hopf interac- IA  (1—i) A g(1—i) A
tion for our model we put —= — = ——r(1-i)A
or 2 (952 2 Js
w=1+re?, 0<e<l, r==1 (7) .
— _ 2
with Eq. (6) suggesting that we scale 1+ 3 AlA (10
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FIG. 2. Plots of Ref) at large times fory=0.2, 0.573, 3.0.

on —o<s<oo, 7>0 with A=0 initially and subject to some
local input.

We consider the cage<<1 (r = — 1) and start by discuss-
ing the linearized version of E¢10). If we look for a solu-
tion to this equation in the formA(s, 7)=A.e*" ¥, where
A, is a constant, we obtain the dispersion relation

(1+1) .
5 Yk+(1-1).

a- k?+

w(k)=— 5

(11)

From Egs.(11) and(12) it then follows that the unperturbed
state A=0) is absolutely unstable fcw<2\/§ and convec-

tively unstable fory>22 (see[5,6]). The most unstable
wave number ik= /2, giving a group velocity,

d Im(w)

Yo" dk 19

for this wave number.
If we now consider the linearized equation in a reference

Equation(11) shows that there are wave numbers for whichframe moving with(constank velocity v, the equation for the
Re(w)>0 and to determine the nature of the ensuing instafréquency, nowx(k), is modified to

bility we first need to find the saddle poifite., the values
ws, ks wheredw/dk=0) for the estimation of the Fourier
integrals for larger. From Eq.(11) we find

lﬂ2

_ly _
ks—7, was)—l— ? (12)

a(k)=w(k)—ikv (14)

with corresponding saddle point at

ks=3[ig+(1-i)v], Reag)=3(8—¢*+4yv—2v?).

(15
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" FIG. 4. Gray-level contour plot d&\| for =3.0 to illustrate the
two regions of constant amplitude regular wave trains separated by
a region of chaotic behavior. In this figure the darker the color the
X smaller the value ofA|.
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o ) propagating with the group velocityi.e., centered ors
FIG. 3. Plots of the concentratidnin the wave packet obtained = y7)

(a) from the solution to the CGL equatiofi0) using Eq.(9) for
=3.0, (b) from a numerical solution to the initial-value problem
(2),(3) for ©=0.99, $=0.3.

We now consider the solution to the full EQLO). The
above discussion suggests that a more appropriate variable to
use isé=s— 7 and then to look for traveling wave solu-

__ tions of the form
At the edges of the wave packet we have neutral stability,

i.e., Reles) =0, which gives velocities, from Ed15), A=Rexdi(kié—w;7)], R arealconstanii=1,2)
17
2
V10— Pt [a+ "b_ V>0, (16)  in the front part (=2) and rear parti(=' 1) of the wave
’ 2 packet. From Eq(10) we obtain the relations
The linear stabilit i i Kk, 4
y analysis suggests that solutions to Eq. R2=1— — 1 = (2—K2— k. 18
. . . . I ’ wl ( | 11[/ I)' ( )
(10) will be wave packets traveling with overall velocity, 2 2 3
=, with front and rear propagating with speads> ¢ and _ _ _
v1<t, respectively. Note that; <0 if <22 as expected. To determine thé; (and henceR; andw;) in each region

This is confirmed by numerical integrations of E40); we  We require the wave solutiord7) to match with the solu-
show a typical example, faof=3.0, in Fig. 1. Here the initial  tions at the front and rear of the wave, where linear theory
stateA=0 was perturbed in a small region centeredson applies. This leads, after expressing EtQ) in terms of

=0 and we plot the amplitudpA| at equal time intervals and requiring neutral stability at the front and rear of the
starting after sufficient time had elapsed for the solution tovave packet, to the relation

develop fully. This figure(and integrations for other values

of ) shows the front and rear of the wave packet propagat-  Kiti—3(2—kZ— k) = — §(8+ 207+ 4v; i+ ¢?).

ing with different velocities, both of which are different from (19

the propagation velocity of the wave packet itself. The com-

puted values of these velocities correlate well with those preThese terms arise from E¢4.7) and(18) and from the linear
dicted above by the linear analysis. For this valuejothe  theory when expressed in terms p# —u;7, the variable
system is only marginally convectively unstable and this carfPpropriate to the propagating front and rear of the wave
be observed by the rear of the wave packet propagating onlgacket. For the fronu,= 4+ /2 and for the reau,;=
very slowly forwards. A further feature to note is the estab-— y4+ #?12, from Eq.(16) expressed in the moving frame.
lishment of two regions of constant amplitude separated by &his then enablek;, R;, w; to be determined in terms @f.
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Applying these expressions fay andu, in Eqs.(18) and  our numerical solutions foA. Results from this are shown in
(19 shows thatk;<0 for all + and that|k,| increase agy  Fig. 3(@ and compared with results obtained from the origi-
increases. We find that, changes sign aty=,, where nal system(2),(3) for u=0.99, $=0.3[Fig. 3b)].
¥5=3(J17—4) (o=0.57296), withk,>0 for <. At A feature of our results is the region of irregular behavior
i, the wavelength of the waves forming the front part of theseparating the two regions of regular oscillations. This is
wave packet becomes infinite. Also @, the direction of particularly evident in Fig. 4, where we give a gray-level
propagation(phase velocity of the waves in the front part contour plot|/A| for =3.0 started after the initial develop-
changes direction relative to that of the wave packet. A furment shown in Fig. 1. This figure shows the region of irregu-
ther important result to note is th& =R, for all . Thus  lar behavior expanding with time. Various tests were applied
the waves in both the front and rear parts of the wave packdp the data in this region, including determining the spatial
have the same amplitude though they have different frequereorrelation function and an initial condition sensitivity analy-
cies(and phase velocitigs sis. These lead us to conclude that the behavior in this central

We illustrate these results in Fig. 2, where we plot largeregion is a form of spatiotemporal chaos.
time profiles of Ref) obtained from numerical integrations ~ Finally, we mention briefly the behavior wher=1 (u
of Eq. (10) for ¢=0.2, 0.573, 3.0, these computations were>1). In this case the unperturbed state-0 is globally
done in the moving frame. Similar profiles are seen forstable foriy<2.2 and convectively unstable fay>2.2.
Im(A). This figure shows the development of waves of dif-Again a two-frequency, constant amplitude wave structure
ferent frequenciegthough of the same amplitude; see alsodevelops with front and rear propagating with speefds
Fig. 1) in the front and rear parts of the wave packet and alsa+ \?/2—4 when the system is convectively unstable. The
the change in sign of the wave numberyat To assess the frequencies arey dependent, though now there is no possi-
implications of this for the original initial-value problem bility of these becoming zero. This behavior is in accord with
(2),(3) we calculate the concentratidnusing Eq.(9) from  that described i4] for the original model.
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