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Interaction between Hopf and convective instabilities in a flow reactor
with cubic autocatalator kinetics
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The interaction between Hopf and convective instabilities in a flow system based on cubic autocatalator
kinetics is discussed. The interaction is described in terms of solutions to a complex Ginzburg-Landau equa-
tion. These solutions are wave packets consisting of regions of constant amplitude~and different phase!
separated by a region of irregular behavior.
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The differential-flow-induced chemical instability~DI-
FICI! @1–3# has aroused considerable interest recently a
mechanism for producing spatial structure in chemical s
tems due to its inherent differences with the much m
widely considered Turing instability. In part, this interest
the DIFICI is sustained by its experimental verification in
differential-flow reactor, a device in which some of the r
agents required for the reaction are immobilized within
reactor while the rest are allowed to flow~and diffuse! freely.
This highlights an important difference between the DIFI
and Turing mechanisms in that in the former case the sp
structures that arise propagate through the system where
the latter case the basic bifurcation is to steady, though
tially varying, behavior.

A model for this reactor, based on cubic autocatalator~or
Gray-Scott! kinetics, has been considered in@4#, where it
was shown that the DIFICI arises essentially through a c
vective ~or spatial! instability @5,6#. The model taken in@4#
assumed that the substrate had been immobilized with
autocatalyst being made to flow. The spatially unifo
steady state then became unstable at a critical~nonzero! flow
rate. At higher flow rates a wave packet developed that c
sisted of waves of constant amplitude and frequency and
propagated through the system with a constant velo
growing in lateral extent as it did so, leaving the system in
original spatially uniform steady state at its rear. This mo
emphasizes a further difference between the DIFICI and T
ing instabilities as the latter requires~for cubic autocatalator
kinetics! that the autocatalyst be relatively immobile com
pared to the substrate@7,8#, the opposite situation to th
model in @4#.

A feature of our flow-reactor model@4# is its ability to
sustain spatially uniform temporal oscillations arising from
supercritical Hopf bifurcation as well as propagating spa
structures arising from convective instabilities. There is th
the possibility of the interaction between these two mec
nisms for destabilizing the spatially uniform steady state a
this is what we consider. The linear stability analysis p
sented in@4# shows that the critical flow rate approaches ze
as the Hopf bifurcation is approached. We exploit th
through a weakly nonlinear analysis valid close to the H
bifurcation and for small flow rates, to derive a compl
Ginzburg-Landau equation~CGLE! to describe this two-
mode interaction. The simplicity of our model enables t
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equation to be readily obtained, a clear identification b
tween the behavior of the solutions to the CGLE~valid close
to the mode interaction! and their counterparts in the origina
model is then possible. Thus our treatment complements
presented recently in@9#, where a CGLE for a DIFICI-Hopf
interaction was derived heuristically for a general system
where direct comparison with a specific model is not read
available. Further, the relative simplicity of the CGLE fo
our model permits a detailed examination, revealing comp
spatiotemporal structures that were not seen in the more
eral treatment@9#.

Our model is based on the reaction between substraA
and autocatalystB with the kinetic scheme:

P→A, rate5k0@P#0 ,

A12B→3A, rate5k1@A#@B#2, ~1!

B→ inert, rate5k2@B#,

where thek i ( i 50,1,2) are constants. We assume thatA is
made immobile within the reactor and thatB can flow with a
constant velocity. With the further assumption of planar g
ometry we arrive at the dimensionless equations@4#

]a

]t
5m2ab2, ~2!

]b

]t
5

]2b

]x2
2f

]b

]x
1ab22b ~3!

on 2`,x,`, t.0. Initially the system is in its spatially
uniform steady state

a~x,0!5m21, b~x,0!5m ~4!

with a small local perturbation being made to Eq.~4! at t
50. In the abovef is the dimensionless flow rate~our bi-
furcation parameter! andm is the dimensionless rate of pro
duction of A from the precursorP. Equations~2!,~3! are
derived in full in @4#. We note@10# that Eq.~4! is temporally
stable form.1 and undergoes a supercritical Hopf bifurc
tion at m51 giving stable limit cycles inm,1.
3246 © 1998 The American Physical Society
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FIG. 1. Plots of the amplitudeuAu at equal time intervals obtained from a numerical integration of Eq.~10! for c53.0. The system was
perturbed initially in a small region centered ons50.
f
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In @4# it was shown that, forf.fc , there is a range o
wave numbersk for which steady state~4! is unstable to
small local perturbations, wherefc is the minimum on the
neutral curve

f25
~k21m221!2~k211!

k2~12k2!
, m.1, 0,k,1. ~5!

Furthermore

fc;2A2~m21!1/21••• as m→11. ~6!

To derive the CGLE describing the DIFICI-Hopf intera
tion for our model we put

m511r e2, 0,e!1, r 561 ~7!

with Eq. ~6! suggesting that we scale
f5ec, c50~1! as e→0. ~8!

An expansion in powers ofe about the spatially uniform
initial state~4!, with an 0(e) term of the form

~a1 ,b1!5A~s,t!eit~22, 11 i !1c.c., ~9!

where s and t are the long space and time variables,s
5ex, t5e2t, leads, through the use of the method of m
tiple scales@11# to keep the expansion uniform by removin
the secular terms that arise at 0(e3), to the CGLE for the
complex amplitudeA(s,t) as

]A

]t
5

~12 i !

2

]2A

]s2
2

c~12 i !

2

]A

]s
2r ~12 i !A

2S 11
5i

3 DAuAu2 ~10!
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FIG. 2. Plots of Re(A) at large times forc50.2, 0.573, 3.0.
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on 2`,s,`, t.0 with A50 initially and subject to some
local input.

We consider the casem,1 (r 521) and start by discuss
ing the linearized version of Eq.~10!. If we look for a solu-
tion to this equation in the formA(s,t)5Ase

vt2 iks, where
As is a constant, we obtain the dispersion relation

v~k!52
~12 i !

2
k21

~11 i !

2
ck1~12 i !. ~11!

Equation~11! shows that there are wave numbers for wh
Re(v).0 and to determine the nature of the ensuing ins
bility we first need to find the saddle point~i.e., the values
vs , ks wheredv/dk50) for the estimation of the Fourie
integrals for larget. From Eq.~11! we find

ks5
ic

2
, Re~vs!512

c2

8
. ~12!
-

From Eqs.~11! and~12! it then follows that the unperturbe
state (A50) is absolutely unstable forc,2A2 and convec-
tively unstable forc.2A2 ~see@5,6#!. The most unstable
wave number isk5c/2, giving a group velocity,

vg5
d Im~v!

dk
5c ~13!

for this wave number.
If we now consider the linearized equation in a referen

frame moving with~constant! velocity v, the equation for the
frequency, nowa(k), is modified to

a~k!5v~k!2 ikv ~14!

with corresponding saddle point at

ks5
1
2 @ ic1~12 i !v#, Re~as!5 1

8 ~82c214cv22v2!.
~15!
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At the edges of the wave packet we have neutral stabi
i.e., Re(as)50, which gives velocities, from Eq.~15!,

v1,25c6A41
c2

2
, v2.v1 . ~16!

The linear stability analysis suggests that solutions to
~10! will be wave packets traveling with overall velocityvg
5c, with front and rear propagating with speedsv2.c and
v1,c, respectively. Note thatv1,0 if c,2A2 as expected
This is confirmed by numerical integrations of Eq.~10!; we
show a typical example, forc53.0, in Fig. 1. Here the initial
stateA50 was perturbed in a small region centered ons
50 and we plot the amplitudeuAu at equal time intervals
starting after sufficient time had elapsed for the solution
develop fully. This figure~and integrations for other value
of c) shows the front and rear of the wave packet propag
ing with different velocities, both of which are different from
the propagation velocity of the wave packet itself. The co
puted values of these velocities correlate well with those p
dicted above by the linear analysis. For this value ofc the
system is only marginally convectively unstable and this c
be observed by the rear of the wave packet propagating
very slowly forwards. A further feature to note is the esta
lishment of two regions of constant amplitude separated b

FIG. 3. Plots of the concentrationb in the wave packet obtaine
~a! from the solution to the CGL equation~10! using Eq.~9! for
c53.0, ~b! from a numerical solution to the initial-value proble
~2!,~3! for m50.99,f50.3.
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region of irregular behavior, increasing slowly in extent a
propagating with the group velocity~i.e., centered ons
5ct).

We now consider the solution to the full Eq.~10!. The
above discussion suggests that a more appropriate variab
use isj5s2ct and then to look for traveling wave solu
tions of the form

A5Riexp@ i ~kij2v it!#, Ri a real constant~ i 51,2!
~17!

in the front part (i 52) and rear part (i 51) of the wave
packet. From Eq.~10! we obtain the relations

Ri
2512

ki
2

2
2

cki

2
, v i5

4

3
~22ki

22cki !. ~18!

To determine theki ~and henceRi andv i) in each region
we require the wave solutions~17! to match with the solu-
tions at the front and rear of the wave, where linear the
applies. This leads, after expressing Eq.~10! in terms ofj
and requiring neutral stability at the front and rear of t
wave packet, to the relation

kiui2
4
3 ~22ki

22cki !52 1
8 ~812v i

214v ic1c2!.
~19!

These terms arise from Eqs.~17! and~18! and from the linear
theory when expressed in terms ofy5j2uit, the variable
appropriate to the propagating front and rear of the wa
packet. For the frontu25A41c2/2 and for the rearu15
2A41c2/2, from Eq.~16! expressed in the moving frame
This then enableski , Ri , v i to be determined in terms ofc.

FIG. 4. Gray-level contour plot ofuAu for c53.0 to illustrate the
two regions of constant amplitude regular wave trains separate
a region of chaotic behavior. In this figure the darker the color
smaller the value ofuAu.
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Applying these expressions foru1 andu2 in Eqs.~18! and
~19! shows thatk1,0 for all c and thatuk1u increase asc
increases. We find thatk2 changes sign atc5c0, where
c0

25 8
3 (A1724) (c050.57296), withk2.0 for c,c0. At

c0 the wavelength of the waves forming the front part of t
wave packet becomes infinite. Also atc0, the direction of
propagation~phase velocity! of the waves in the front par
changes direction relative to that of the wave packet. A f
ther important result to note is thatR15R2 for all c. Thus
the waves in both the front and rear parts of the wave pa
have the same amplitude though they have different frequ
cies ~and phase velocities!.

We illustrate these results in Fig. 2, where we plot lar
time profiles of Re(A) obtained from numerical integration
of Eq. ~10! for c50.2, 0.573, 3.0, these computations we
done in the moving frame. Similar profiles are seen
Im(A). This figure shows the development of waves of d
ferent frequencies~though of the same amplitude; see al
Fig. 1! in the front and rear parts of the wave packet and a
the change in sign of the wave number atc0. To assess the
implications of this for the original initial-value problem
~2!,~3! we calculate the concentrationb using Eq.~9! from
-

et
n-

e

r
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o

our numerical solutions forA. Results from this are shown in
Fig. 3~a! and compared with results obtained from the ori
nal system~2!,~3! for m50.99,f50.3 @Fig. 3~b!#.

A feature of our results is the region of irregular behav
separating the two regions of regular oscillations. This
particularly evident in Fig. 4, where we give a gray-lev
contour plotuAu for c53.0 started after the initial develop
ment shown in Fig. 1. This figure shows the region of irreg
lar behavior expanding with time. Various tests were appl
to the data in this region, including determining the spa
correlation function and an initial condition sensitivity anal
sis. These lead us to conclude that the behavior in this cen
region is a form of spatiotemporal chaos.

Finally, we mention briefly the behavior whenr 51 (m
.1). In this case the unperturbed stateA50 is globally
stable forc,2A2 and convectively unstable forc.2A2.
Again a two-frequency, constant amplitude wave struct
develops with front and rear propagating with speedsc
6Ac2/224 when the system is convectively unstable. T
frequencies arec dependent, though now there is no pos
bility of these becoming zero. This behavior is in accord w
that described in@4# for the original model.
D
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